| BsubT |
Backward Substitution x = Bsub(u, y)
|
| CholeskyT(T) |
Cholesky decomposition A = LL'
|
| CholeskyT(ComplexT) |
Cholesky decomposition A = LL'
|
| ComputeInvJacobiEigT |
Computes Inverse Jacobi Matrix using Eigenvalue Decomposition
|
| ComputeJacobiEigT(T) |
Computes Jacobi Matrix using Eigenvalue Decomposition
|
| ComputeJacobiEigT(T, Int32) |
Computes Jacobi Matrix using Eigenvalue Decomposition
|
| CTransposeT |
Conjugate Transpose 2D-Array (Matrix)
|
| DetT |
Determinant of a square matrix
|
| DotT(T, T) |
Matrix Multiplication c = Dot(a, b)
|
| DotT(T, T) |
Matrix Multiplication c = Dot(a, b)
|
| Dot_A_invBT |
Matrix Multiplication c = Dot(a, Inv(b))
|
| Dot_invA_BT |
Matrix Multiplication c = Dot(Inv(a), b)
|
| FsubT |
Forward Substitution x = Fsub(l, y)
|
| GeneralLstSqrSolveT(ComplexT, ComplexT, T, LstSqrAlgorithm) |
Solve linear weighted least-squares problem
x = inv(A'inv(V)A)A'inv(V)y
|
| GeneralLstSqrSolveT(T, T, T, LstSqrAlgorithm) |
Solve linear general least-squares problem
x = inv(A'inv(V)A)A'inv(V)y
|
| InvT |
Inverse of a square matrix
|
| IsDetZeroT |
Is determinant of a square matrix equal to zero
|
| LstSqrSolveT(ComplexT, ComplexT, LstSqrAlgorithm) |
Solve linear least-squares problem
|
| LstSqrSolveT(T, T, LstSqrAlgorithm) |
Solve linear least-squares problem
|
| LuT |
LU factorization Implement [l u p] = Lu(a)
|
| ParallelDot |
Matrix Multiplication c = Dot(a, b)
|
| ParallelDotMMt |
Matrix Multiplication c = Dot(a, a')
|
| QrT(ComplexT, ComplexT, ComplexT) |
QR decomposition A = QR
|
| QrT(T, T, T) |
QR decomposition A = QR
|
| SolveT |
Solve a linear system of equations
|
| SvdT(ComplexT, ComplexT, T, ComplexT) |
Singular value decomposition A = UWV'
|
| SvdT(ComplexT, ComplexT, ComplexT, ComplexT) |
Singular value decomposition A = UWV'
|
| SvdT(T, T, T, T) |
Singular value decomposition A = UWV'
|
| SvdT(T, T, T, T) |
Singular value decomposition A = UWV'
|
| TransposeT |
Transpose 2D-Array (Matrix)
|
| WeightedLstSqrSolveT(ComplexT, ComplexT, T, LstSqrAlgorithm) |
Solve linear weighted least-squares problem
x = inv(A'(W'+W)A)A'(W'+W)y
|
| WeightedLstSqrSolveT(T, T, T, LstSqrAlgorithm) |
Solve linear weighted least-squares problem
x = inv(A'(W'+W)A)A'(W'+W)y
|